

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Finite Element Method (18CE0137)

Course & Branch: B.Tech - CE

Regulation: R18

Year & Sem: IV-B.Tech & I-Sem

UNIT –I INTRODUCTION & PRINCIPLES OF ELASTICITY

1	a Define Finite element method in Engineering.	[L1][CO1]	[02M]
	b List out various applications in FEM.	[L1][CO1]	[02M]
	c Define discretization process in FEM.	[L1][CO1]	[02M]
	d List out various types of elements in FEM.	[L1][CO1]	[02M]
	e Write short notes on elasticity and elastic parameters.	[L1][CO1]	[02M]
2	Explain the concept of FEM briefly and outline the steps involved in FEM	[L1][CO1]	[10M]
3	What are the advantages, disadvantages and applications of FEM	[L1][CO1]	[10M]
4	Explain the concept of strain energy and principle of minimum potential energy.	[L2][CO1]	[10M]
5	Explain the concept of Rayleigh-Ritz method of functional approximation.	[L2][CO1]	[10M]
6	Derive the equation of equilibrium in case of three dimensional stress system.	[L2][CO1]	[10M]
7	Derive strain -displacement relationship in matrix form.	[L2][CO1]	[10M]
8	Explain the plane stress condition and write the constitutive relations for the plane	[L2][CO1]	[10M]
	stress condition.		
9	Explain the plane strain condition and write the constitutive relations for the plane	[L2][CO1]	[10M]
	strain condition.		
10	Define Axi-Symmetric Bodies of Revolution with Axi-Symmetric Loading and give	[L2][CO1]	[10M]
	expression for strain displacement relation for axi-symmetric bodies.		

UNIT –II ONE DIMENSIONAL & TWO DIMENSIONAL ELEMENTS

1	a Write the expression for element stiffness matrix of a beam.	[L1][CO2]	[02M]
	b Give the expression for shape functions of a linear element.	[L1][CO2]	[02M]
	c Define plane stress problems with example.	[L1][CO2]	[02M]
	d Define geometric invariance.	[L1][CO2]	[02M]
	e Define plane strain problems with example.	[L1][CO2]	[02M]
2	Explain different types of elements in FEM with neat sketch.	[L2][CO2]	[10M]
	Define one-Dimensional element and list out various forces act on a element when load is applied with neat sketch.		[10M]
4	Determine the shape functions N_1, N_2, N_3 at interior point 'p' for triangular element with local coordinates P(3,1.5) and global coordinates(1,3),(3,4) and (4,6).	[L2][CO2]	[10M]
5	Define shape function and write expression for one dimensional bar element	[L2][CO2]	[10M]
6	Explain the Displacement models and generalized coordinates in FEM	[L2][CO2]	[10M]
-	Explain various types of coordinate systems in FEM.	[L2][CO2]	[10M]
8	Define 2-D elements and explain the Iso Parametric element ,sub -parametric element and superparametric elements in FEM.	[L1][CO2]	[10M]
9	Determine the shape functions N1,N2,N3 at interior point 'p' for triangular element	[L2][CO2]	[10M]
	with local coordinates $P(2,1)$ and global coordinates $(2,3), (3,3)$ and $(3,5)$.		
10	Explain area coordinate system and volume coordinate system in finite element analysis.	[L2][CO2]	[10M]

UNIT –III

SHAPE FUNCTIONS

1	a	Define shape function.	[L1][CO3]	[02M]
	b	Write expression for element stiffness matrix for 2 noded 1-D bar element.	[L1][CO3]	[02M]
	c	Write expression for strain displacement matrix for 3 noded 1-D bar element.	[L1][CO3]	[02M]
	d	Define Lagrangian element.	[L1][CO3]	[02M]
	e	Define serendipity element.	[L1][CO3]	[02M]
2	Ex	plain about Convergence & Compatibility requirements in FEM.	[L2][CO3]	[10M]
3	De	rive the shape functions for 1-D two noded bar element	[L2][CO3]	[10M]
4	De	rive the shape functions for 1-D three noded bar element.	[L2][CO3]	[10M]
5	Di	fferentiate between CST and LST elements.	[L2][CO3]	[10M]
6		fine shape function. Write the properties of shape function and explain with ample.	[L2][CO3]	[10M]
7		prive the value of displacement at point p which is shown in fig.Calculate shape notions N_1 , N_2 & ϵ .For above fig. Displacement $q_1=0.003$ inch and $q_2=0.05$ inch	[L2][CO3]	[10M]
		P X ₁ =20 X=24 X ₂ =36		
8	Der	ive shape function using polynomials by direct method.	[L2][CO3]	[10M]
9	Der	ive shape function using polynomials by matrix method.	[L2][CO3]	[10M]
10		termine the shape functions N1,N2,N3 at interior point 'p' for triangular	[L2][CO3]	[10M]
	ele	ement. The co-ordinate are P(3.5,5), (2,3),(7,4) and (4,7).		

1	a Write short notes on generation of stiffness matrix.	[L1][CO4]	[02M]
		[L1][CO4]	[02M]
	c Write expression for stress-strain relationship matrix for plane stress problems.	[L1][CO4]	[02M]
	d Write expression for stress-strain relationship matrix for plane strain problems.	[L1][CO4]	[02M]
	e Write short notes on CST elements.	[L1][CO4]	[02M]
2	Derive the stiffness matrix for stepped bar element.	[L2][CO4]	[10M]
3	For two bar truss as shown in figure .Determine the displacement at node 2 and stresses in both elements. E=70Gpa,A=200mm ²	[L2][CO4]	[10M]
4	Derive the shape function for the 3-noded CST element.	[L2][CO4]	[10M]
5	Derive the strain displacement matrix for the 3-noded CST element.	[L2][CO4]	[10M]
6	Derive the expression for element stiffness matrix for two dimensional elements.	[L2][CO4]	[10M]
7	Calculate element stresses σ_x , σ_y , T_{xy} , σ_1 , σ_2 , and principle angle θp for the CST element. The nodel displacement are $y = 2.0 \text{ µm}$, $y = 1.0 \text{ µm}$, $y = 0.5 \text{ µm}$	[L3][CO4]	[10M]
	CST element . The nodal displacement are $u_1=2.0 \ \mu m$, $v_1=1.0 \ \mu m$, $u_2=0.5 \ \mu m$		
	$v_2=1.5 \ \mu m$, $u_3=1.2 \ \mu m$, $v_3=2.8 \ \mu m$. co-ordinates are (10,8) (15,5), and (18,12).		
	Take E=210 Gpa and poisson's ratio as 0.25. assume plane stress condition.		
8	Evaluate strain displacement matrix and stress -strain matrix for the Tri-angular element under plane stress condition .The co-ordinate are $(0,0)$ (6,0) and (3,5). Assume u=0.25, t=1mm, E=200 Gpa.	[L2][CO4]	[10M]
9	Determine the shape function for the rectangular element which has local coordinates $\varepsilon=0.4$ and $\eta=0.2$. The Global co-ordinates are (2,2) (3,4) (8,6) and(4,5). All dimensions are in mm.		[10M]
10	For a given triangular element with nodes of coordinates A(2,3) B(5,2) C(3,4).the interior point in a triangle is P(4,5)Calculate shape functions $N_1,N_2,\&N_3$	[L2][CO4]	[10M]

UNIT –V ISOPARAMETRIC FORMULATION & AXI-SYMMETRIC ANALYSIS

1	a	Define iso-parametric elements.	[L2][CO5]	[02M]
	b	Write short notes on lagrangian elements with suitable examples.	[L2][CO5]	[02M]
	c	Write short notes on serendipity elements with suitable examples.	[L2][CO5]	[02M]
	d	List out various advantages of isoparametric formulation.	[L2][CO5]	[02M]
	e	Define Axi-symmetric elements.	[L2][CO6]	[02M]
2	Deı	ive the expression for Iso -parametric formulation for CST elements.	[L2][CO5]	[10M]
3	Dei	vive the shape function for 4-noded Iso -parametric quadrilateral element.	[L2][CO5]	[10M]
4	Dei	ive the shape function for 8-noded Iso -parametric quadrilateral element.	[L2][CO5]	[10M]
		rive strain displacement matrix and elementary stiffness matrix for 4-noded Iso- ametric Quadrilateral Elements	[L2][CO5]	[10M]
6	De ε=	etermine the cartesian co-ordinates of the point 'p' which has local coordinates 0.5 and η =0.6. The Global co-ordinates are (2,1) (8,3) (7,7) and (3,5). All mensions are in mm.	[L2][CO5]	[10M]
7	po	etermine the shape function $N_1, N_2, \&N_3$ using isoparametric concept at the interior ints P (3.85,4.8) for the triangular element. The Global co-ordinates are (1.5,3) ,3.5) and (4,7). Alldimensions are in mm.	[L2][CO5]	[10M]
8	=3	etermine the Cartesian co-ordinates of the point 'p' which has local co-ordinates 0.6 and η =0.3. The Global co-ordinates are (2,4) (3,6) (8,12) and(4,8). All mensions are in mm.	[L2][CO5]	[10M]
9	=3	etermine the Jacobian matrix for 2-D element which has local co-ordinates 0 and $\eta=0$. The Global co-ordinates are (1,1) (5,2) (4,5) and(2,5). All dimensions e in mm.	[L2][CO5]	[10M]
10	Ex	xplain about formulation of 4-noded Iso-parametric Axi - Symmetric element.	[L2][CO6]	[10M]

Prepared by: Mrs.K.Asha Latha Assistant Professor/CE